
Getting Started with LATEX

Chris Spackman

May 26, 2002

Contents

1 Introduction 2

2 Before We Start 5

3 Getting Started 7

4 Subsections, Etc. 9

5 Reserved Characters 10

6 Footnotes 11

7 Playing with Fonts 12

8 Environments 14

9 Lists 16

10 Finishing and Processing Your Article 18

11 Conclusion 21

12 Hints 22

13 Sample LATEX Document 22

1

14 About This Document 23

1 Introduction

What is LATEX?

You might have heard about how cool LATEX is, but maybe aren’t sure what it is.
Let’s start with what it is not. It is not a word processor. It is not a text editor. It
might be best to think of LATEX as a kind of markup language. It doesn’t matter
what word processor or text editor you use. While you are writing, you insert
markup commands that will be used later when you uselatex , the program, to
create the finished product.

There are a few things we need to understand before we get too deep into talking
about LATEX. (Experts can argue the details of some of the following, but this
is intended for lay-people, not experts.) If you are already somewhat computer
literate, feel free to skip to section 2,Before We Start, which is where we start
dealing specifically with LaTeX.

plain text or just text. This is a generic standard for computer text. Any com-
puter on any operating system can understand it. The standard contains no
layout information at all, so text can only display what you can type in from
your keyboard. Upper and lower case are not a problem, but keyboards
do not have a key to make textbold, or to changefonts. In order to dis-
play things like tables, centering and different fonts, word processors add
program-specific data into their files. In many proprietary word-processors,
this data is not plain text, so their files are not plain text—which makes them
very hard for any other program to read. MS Word is an example of this.
Markup languages like html, and many open-source word-processors like
OpenOffice, AbiWord, and KOffice, use plain text to add the necessary font
and layout information. So, their files are not plain text.

To see this in action, open up your favorite word processor and make a
document with all sorts of layout and many different fonts. Save it. Now
save it again as a text file. (Usually fromFile → Save as... and then
choosetext from the drop down menu.) Close the word processor and
open it again. Now open the text file you just saved. The entire document
contains only one font, right? Everything is the same size, and everything
is in the same font. Also, any centering or other layout is either gone or
converted to spaces. That is plain text.

2

text processor : A program that processes text. Literally, it takes text (from a file
in the case of LATEX), does something to that text, and outputs the changes
to a new file. LATEX reads a text file, does pagination, centering, fonts, page
numbering, and all the rest, and writes the result to a new file.

finished product : The file you have after running LATEX on a text file, or the file
you want to eventually have. LATEX usually makes a.dvi file, but you can
turn those into.ps or .pdf files very easily. So, for the purposes of this
article, thefinished productcould be any of these.

The important thing to understand about thefinished productis that it con-
tains all the extra information about fonts and layout. It is not a text file that
you can edit1. If you open it with the appropriate program, you will see how
your document looks.

Working with LATEX

Working with LATEX is a three step process:

1. Write your report, book, article, or whatever, including LATEX markup com-
mands.

2. Process your document with the programlatex . This is usually done
from the command line (a dos window, for MS Windows users). You type
the name of the program you want to run (latex in this case) and the name
of the file you want that program to work on. We’ll deal with this in a lot
more detail in section 10 on page 18.

3. View the finished product. If everything is okay, you are done. If you need
to make changes, go back to step one (no you do not have to rewrite your
document from scratch—your text file is still there and totally unharmed).

LATEX vs Word Processors

If LATEX is a three step process and requires you to learn layout commands, why
would anyone prefer it to a regular word processor? There are many reasons. Most
word processors are “what you see is what you get” (WYSIWYG) programs that
show what you tell them to show, where you tell them to show it. If you want to
leave some blank space, you hit the return key a few times. If you want to center

1Well, some are text files, but you would never want to try to edit them by hand.

3

something you highlight it and click on the center button. On the screen, you see
the text moved to the center of the page.

WYSIWYG word processors have several limitations. They should really be
known as “what you see is usually something like what you might get”. Even
viewing the same file with the same program but on a different computer can cause
font, pagination, or other layout problems. So what you saw when you wrote the
document might not be what someone else sees when they read it. Likewise, the
output can vary depending on the printer you use.

To be honest,WYSIWYG word processors are often “good enough”. Most of
the time small differences in pagination are not important. Likewise, few people
would care or even notice if one font gets replaced by a similar one.

LATEX is not WYSIWYG. Because the writing of the document and the layout of
the document are separate steps, the layout can be optimized. The layout program
knows that it has all the data, so it can look at it all and decide exactly how to
best paginate and where to place figures and tables.WYSIWYG word processors
cannot do this because they are doing layout while you are typing.

LATEX was made by people who know what professional layout is. Word proces-
sors require the author to make all the layout choices. Should your margins really
be 1 inch, regardless of the font size you are using? More important than the size
of the margin is the number of letters per line. The human eye can only take in so
many at one time, so lines should generally have no more than about 60 letters per
line. In a 10 point font, that might require bigger margins that if you were using
a 14 point font. Word processors do not think of this for you. By default, LATEX
does (but you can always change the defaults to suit your needs).

A further plus is that LATEX’s output is exactly the same on every computer and
every printer. It isdevice independent.

Of course, LATEX can take care of footnotes, page-numbering, the cover page,
the tables of contents and figures, indexing, images, bibliography, and a whole lot
more.2

Here are a few more reasons that I prefer LATEX over word processors:

• Text files—you can use your editor of choice as well as your platform of
choice. No lock-in at all.

• LATEX can compile several separate files into a single document. For long
works like books or dissertations this is a huge advantage as there is no need
to open the entire work just to make one or two changes. It also facilitates

2Some of these features require the use of separate packages. Many are installed along with a
typical installation, but you might need to install one or two yourself, depending on your needs.

4

moving chapters around or rewriting entire chapters without touching the
rest of the work. Also, pictures and other graphics are separate from the
work until you run it through LATEX (and then a copy of the graphic is in-
cluded in the final product). This means smaller, easier to handle, files. It
also means you can easily use any program you want to make or change the
graphics.

• A variety of programs exist to turn LATEX files into various other files. You
can easily turn one set of LATEX files into postscript files, PDF files, or
HTML.

• Power and flexibility—LATEX can handle just about any writing task, from
a letter to grandma to a textbook of theoretical physics. Many people have
written add-on packages that make it simple to do some pretty complex
things. LATEX itself is actually a set of macros designed to make it easier for
people to use TEX, the original program and still the engine hidden under
the friendly LATEX exterior.

• Use whatever size font you want when you write your document. I prefer to
write in 14 or even 16 point fonts—it is easier on my eyes. Since you save
as text, none of the font size info is saved. LATEX will automagically deal
with all the font stuff later. (Think what a pain it would be to write a book
in MS Word in 16 point and then have to go change it all to 12 point when
you want to print it.Edit → Select All would only work if you had
no other font size changes in your document.)

2 Before We Start

There are a few things you need to know about how LATEX works before we start.
Some of this we covered above, but it is worth repeating, just so there is no confu-
sion. As I have already said several times, LATEX is a program that you run on an
already existing text file. You can create that file with whatever writing program
you like. While you are writing your document, you include some of the com-
mands we will discuss later. Then, when you are finished writing, you run your
text file throughlatex , which results in a new file that is the final product. For
many people used to word processors and unaccustomed to the command line,
this is a difficult concept to grasp at first.

From now on, I will treat LATEX (the overall program that includes the markup
commands) andlatex , the program you run to produce the final product, as the
same and refer to them collectively as LATEX. It should be clear from the context
which one is meant.

5

LATEX treats any number of spaces between words as one space regardless of
how many spaces you included. Every space after the first is ignored. Of course
if you need to insert extra space it is possible and easy in LATEX, but the space
bar is not the way to do it. Don’t worry about the extra space between the end
of a sentence and the beginning of the next sentence—LATEX takes care of that
automagically.

If you have usedWYSIWYG word processors, you are probably used to hitting
the return key several times to add some vertical space between paragraphs or
before and after a table. That will not work in LATEX. Hit the return key one times
or ten, the result is still one paragraph break. It is possible to insert vertical space
if you want, but in LATEX, the return key is not how you do it.

In LATEX, there are four types of hyphens. All are made with the normal hyphen
(or minus) key.

- The hyphen. It is used for words broken by a line break (LATEX, of course, does
this for you automagically) and for compound words like ex-wife or e-mail.
Typing one hyphen (-) will result in a hyphen.

– Theen-dash. It is used to separate ranges of numbers (see pgs. 234–253). Type
two hyphens (--) to get an en-dash (it will appear in the final LATEX’ed file,
not in your text editor).

— Theem-dash. It is used as punctuation—like this. Type three hyphens (---)
to get an em-dash.

− The minus sign. TEX was originally written to do layout for mathematics ar-
ticles and can do amazing things with equations, matrixes and other stuff
many people will never need. To get a ‘real’ minus sign type $-$. That
is two dollar signs with a hyphen between them. In the final copy, it will
appear as a minus sign. So,-3 in your text file looks like−3 in the final
product. Of course, if you don’t care, a regular hyphen might be just as
good.

Do not use three periods (aka full-stops) for ellpses. Instead, LATEX has the
\ldots command, which takes care of proper spacing between the periods.

Finally, LATEX distinguishes opening and closing quotes. So do not use the dou-
ble quote key. Instead, beginning quotes are the anti-apostrophe key (‘). Closing
quotes (’) are simply the normal apostrophe. If you want two (“like this”), just hit
the appropriate key twice.

(The above points about spacing and quotes are true for your final product, not
for the text file containing your work. You can insert all the blank space you want

6

into your text file. When you run it through LATEX, the blanks will not appear in
the output. This is another advantage, since you can use blank space to make your
document easier to read / deal with, without affecting how the final will look.)

Please understand that LATEX knows what it is doing and will sometimes over-
ride your requests—for example by moving figures around or refusing to insert
blank space if it just before or after a page break. If it does this, it is usually for a
good reason. If you really need that blank space, page break or no, you can still
get it. This isn’t a bug in LATEX, it is LATEX trying to make your document look as
professional as possible.

3 Getting Started

Okay, let’s get started. First we need to tell LATEX what kind of a document we are
writing, so put this on the first line:

\documentclass[a4paper,12pt]{article}

\documentclass —almost all3 LATEX commands begin with a backslash (\)
followed by the command (‘documentclass’ in this case) and possibly some ar-
guments for that command in squiggly brackets ({ and}). The regular brackets [
and] are used occasionally for optional arguments. In this case, ‘documentclass’
defines what sort of document we are writing and here takes ‘article’ as its main
argument. The optional arguments ‘a4paper,12pt’ tell LATEX that we want to use
a 12 point font instead of the default 10 point size and that we are using a4 paper
instead of the default of 8.5 x 11 inch paper.

The basic document classes are ‘article’ ‘report’ ‘book’ and ‘letter’. There are
also several other, more specialized, document classes. The document class that
you chose influences things like the layout of the title page and page numbering
and style. (If you want to, you can override any of the defaults.) Not all commands
are available in all classes. Articles and letters, for example, do not have chapters
or prefaces and the author’s address is usually only included in letters.

In general, unless you are working on your dissertation or a novel, article and
letter should serve you well. We will practice with the article class here.

Next, we tell the program what to use as the title, the author’s name, and the
date.

3the main exception being font size commands which start with{ instead. See section 7.

7

\title{Getting Started with \LaTeX}
\author{Chris Spackman}
\date{\today}

The arguments (the stuff inside{ and}) can be just about anything, includ-
ing other commands — as you can see from the use of\LaTeX inside the title
command and\today inside the date command.

When you process your text file, LATEX will take this information and place it
on the appropriate place on the page, in the appropriate font. No need to fiddle
with the layout details unless you do not like the defaults.

Now, hit return once or twice and add:

\begin{document}

\maketitle
\tableofcontents

The command\begin {document } tells LATEX that all the preliminary meta-
document stuff is finished and we are now starting the actual document.

The area from the\documentclass to the\begin {document } is called
the preamble. It is where you include information on extra packages that you
might want to use and other meta-information that is not part of the content of the
document you are writing.

Just because the title, author, and date information are in the preamble, that
doesn’t mean that they are automagically included in the final document. The
\maketitle command right after the\begin {document } tells LATEX to in-
sert the title information.

Finally, we added the\tableofcontents command just after the title. For
most writing tasks, LATEX will automagically generate a more than adequate table
of contents with very little input needed from the author. If you don’t want a TOC,
then don’t include this command.

By the way,\begin {environment } is how you start environments. Envi-
ronments do various things to the text of your document. There are list environ-
ments, center, flushleft and flushright environments, verbatim environments, color
environments, and many others. They all start with\begin {environment }
and end with\end{environment }. More on environments later.

Now that the preliminaries are taken care of, it is time to get to work writing
our document. Since this is an article, the largest division is a section.

We add:

8

\section{Introduction}

The\section you no doubt understand—it is simply the command to start
a new section. The argument{Introduction } gives the section the name
‘Introduction’. In the final document, this section will be numbered, with the title
‘Introduction’. An entry will also be automatically added for this section in the
table of contents.

If you do not want numbered sections, put an asterisk after the command name,
like this:

\section*{Introduction}

Now this section will not be numbered andwill not be listed in the table of
contents. It will still be given the title ‘Introduction’, just like with the regular
section command. But what if you don’t want numbered sections, but do want a
table of contents? Try this:

\section*{Introduction}
\addcontentsline{toc}{section}{Introduction}

Actually there are better ways to do this. We will look at them in a future article.

Like with \title {}, the section name can contain other commands. We could
have called this section\section {Introduction to \LaTeX}. A more
likely use would be to change the font for some or all of your section name — to
italics perhaps.

Now, we type our introduction. To start a new paragraph just leave a blank line
between the two paragraphs. Repeat: to start a new paragraph, leave one (or more)
blank lines between the paragraphs. That is all you need to do.

4 Subsections, Etc.

You might want more than just sections in your article. Predictably, under sec-
tions aresubsections and under them aresubsubsections . Paragraph
divisions are also possible.

9

Subsections

Subsections are one step below sections and the command is basically the same:

\subsection{Name of the subsection}

Like with sections, you can prevent each subsection from being numbered and
included in the TOC by using an asterisk:

\subsection*{Name of the subsection}

Etc.

You can go all the way down to subparagraphs if you like.

\subsubsection{Name of the subsection}

\paragraph{Name of the paragraph}

\subparagraph{Name of the subparagraph}

The asterisk form is also possible for all of these.

Note that you do not have to use any of these. Even\section is totally
optional. For a short essay, you might not need anything other than a title.

Further, there is no need for you to use\paragraph unless you want the para-
graph distinguished in some way. For normal text, you can get paragraph breaks
just by leaving a blank line between the paragraphs in your text file. Nowhere in
this article have I used the paragraph command.

5 Reserved Characters

You may have realized that you cannot easily include a\ or the{ } in your text.
In fact there are ten reserved characters—characters that have special meanings to
LATEX and will cause you all sorts of headaches if you aren’t careful with them.
The reserved characters are:

$ % & { } ˜ ˆ \

10

In order to use these characters in your documents, they must be ‘escaped’
(marked so that LATEX knows to treat them as normal characters) by preceding
them with a backslash (\).

The extra-special cases are the tilde (˜), the circumflex (̂), and the backslash
itself.

The tilde is used to create an unbreakable space, for those times when you want
to make sure that two or more words stay together on the same line. Unfortunately,
\˜ is used both to print an ordinary tilde and also to print the tilde over letters.
\˜{n} yieldsñ and\˜{} yields ˜, So it is best to include the{}, to avoid putting
the tilde over the next letter.

The circumflex is also a royal pain in the butt. It is used in math mode for
making superscripts (x2 for example) and is also used for accenting other letters
(\ˆ{o} = ô). Another way to print the tilde, and the easiest way to print the
circumflex by itself is with the verbatim command:

\verb-ˆ-
\verb-˜-

To get a backslash in your document, you must use\backslash . This is
because the double backslash (\\) is used as a line break and thus is not available
as an escape for the backslash.

The list of reserved characters above looks like this in the latex file:

\# \$ \% \& _ \{ \} \verb-˜- \verb-ˆ- \backslash

Comments

By the way, the percent sign (%) is used to put comments into your text files. Ev-
erythign from a % to the end of the line is ignored by LATEX and will not appear
in the final product. Comments can be helpful if more than one person is work-
ing on a document, or with big projects where you might want to include some
information, for example, about when you last modified some part of the file.

6 Footnotes

To include a footnote, just type\footnote {text of your footnote} right next to
where you want the reference to appear in the final product. LATEX will automag-
ically number the footnote and place the footnote text at the bottom of the proper
page. If you have footnotes, you should run LATEX at least three times, just to be
sure.

11

7 Playing with Fonts

Although LATEX takes care of font sizes for section titles and footnotes automat-
ically, you can also change fonts manually whenever you like. For normal text
(a paper for school or a letter to grandma, for example), there isn’t much reason
to change the default font face. Take a look at any novels you might have—how
many different fonts are in them? Maybe three or four total? One problem with
word processors like MS Word is that people get used to changing fonts just be-
cause they can, regardless of whether they should.

Changing the Font Face

Changing a font face for a few words easily accomplished with the\textXX {some
text } command, where XX is the two letter abbreviation of the kind of font you
want.

• \textbf {text } = bold face

• \textit {text } = italic

• \textrm {text } = serif

• \textsc {text } = SMALL CAPITALS

• \textsf {text } = sans serif

• \textsl {text } = slanted text

• \texttt {text } = typewriter text

Additionally, \textsuperscript {text } can be used toraise text.

This list is not exhaustive.

Changing the Size of Fonts

The following commands can be used to make fonts bigger or smaller. The exact
size is relative to the font size declared in the preamble. Huge is bigger if you
choose 12 point for your base font than if you go with the default 10 point. The
base font is set as one of the options to the\documentclass declaration. In
this article, we are using 12 point as the base size.

12

• {\tiny ABCD } = ABCD

• {\scriptsize ABCD } = ABCD

• {\footnotesize ABCD } = ABCD

• {\small ABCD } = ABCD

• {\normalsize ABCD } = ABCD

• {\large ABCD } = ABCD

• {\Large ABCD} = ABCD

• {\LARGE ABCD} = ABCD

• {\huge ABCD} = ABCD
• {\Huge ABCD} = ABCD

Note that the font size commands look like this:

{\size text }
unlike most other commands that look like this:

\commandname{text }.

Emphasis

There is also a useful command for emphasizing words. This is not quite the same
as changing the font, but close. The emph command looks like this:

\emph{text you want emphasized}

One advantage of using the emph command is that it worries about the proper
font to use. So an emph command inside of another emph command results in a
different font for the doubly emphasized text. It looks like this:

Here is some normal text that I amnow going toemphasize, but the wordem-
phasizeitself is double-emphasized.

13

8 Environments

We looked very briefly at environments before, but now let’s get a lot more de-
tailed. Remember that environments start with:

\begin{environment}

and end with:

\end{environment}

everything in between is affected by that environment. For example, the following
code (the\\ starts a new line in the same paragraph):

\begin{center}
This text is centered.\\
As is this text.
\end{center}

\begin{flushright}
But this text is right justified.\\
And so is this text.
\end{flushright}

results in:

This text is centered.
As is this text.

But this text is right justified.
And so is this text.

Here is a list of environments. Usage is:
\begin {environment }
. . .
\end{environment }

14

• flushleft

• flushright

• center

• verbatim

• itemize

• enumerate

• description

• quote

• quotation

• verse

Verbatim is explained below and lists (the itemize, enumerate, and description
environments) in the next section.

Starting an environment and then forgetting to end it is a very common mistake.

Commands⇐⇒ Environments

Many commands can also be used as environments and some environments can
be used as commands. An ‘itemize’ command would not make much sense, but
the verbatim environment is very useful as a command when you only need it for
a few words.

The Verbatim Environment

The verbatim environment starts like any other, with a begin{environmentname}
command. Everything between the opening and closing of the verbatim environ-
ment is printed as is in a typewriter style font and with no LATEX processing at all.
This means you need to put in line breaks and spacing on your own. LATEX will
happily print right off the page if you let it.

Here is the above paragraph, but in verbatim:

The verbatim environment starts like any other, with a
begin\{environmentname\} command. Everything between
the opening and closing of the verbatim environment is
printed as is in a typewriter style font and with no
\LaTeX{} processing at all. This means you need to put
in line breaks and spacing on your own. \LaTeX{} will
happily print right off the page if you let it.

The Verbatim Command

The verbatim command (actually it is ‘verb’) is a little unusual in that it doesn’t
use{ or }. Instead, you choose a character to be used as the opening and closing
braces. The command looks like this:

15

\verb+this text is verbatim+

In this example, I used the plus sign (+) to start and end the content of the
verb command. Letters of the alphabet, the asterisk (*), and spaces are the only
characters youcannot use to open or close the verb command. Of course, you
need to use the same letter to open and close a verb command.

9 Lists

Making lists is easy. After starting one of the list environments described below,
just use the\item command to start a new list item. LATEX will take care of the
formating details. Here is a sample of a short list:

\begin{itemize}
\item This is item one.

\item This is item two.

\item Etcetera, etcetera. Blah, Blah.
\end{itemize}

and it looks like this:

• This is item one.

• This is item two.

• Etcetera, etcetera. Blah, Blah.

You don’t need the spacing between the item commands—I prefer the extra
space to make big lists more readable (remember that LATEX ignores extra blank
space, so the extra space has no effect at all on how the list looks in the final
LATEX’ed version). And of course the text of an item can be as long as you like and
contain almost any other command, including other lists. The bullets for nested
lists are taken care of automagically by LATEX.

The Itemize Environment

The example above showed the itemize list environment. Bullets change automat-
ically if you nest (put one inside of another) itemize environments.

16

The Enumerate Environment

This list environment gives you numbered list items. It looks like this:

1. This is the first item of the top level enumerate environment.

2. This is the second. We will now start a new enumerate list.

(a) “Four score and seven years ago. . . ”

(b) “I have a dream. . . ”

3. Now we are back to level 1. Let’s end this list.

The above looks like this in the text file:

\begin{enumerate}

\item This is the first item of the top level enumerate environment.

\item This is the second. We will now start a new enumerate list.

\begin{enumerate}

\item ‘‘Four score and seven years ago\ldots’’

\item ‘‘I have a dream\ldots’’

\end{enumerate}

\item Now we are back to level 1. Let’s end this list.

\end{enumerate}

Notice the indenting—it makes it easier to distinguish which item is in which
list, but doesn’t cause any problems in the final product, because LATEX ignores
the extra blank space.

17

The Description Environment

This list environment is used when you want to describe or define a term. It au-
tomagically makes the target word bold and takes care of the indenting of the rest
of the paragraph. The list on page 2 that explainsplain text and the other terms
is a description list. The only thing you need to do differently is tell LATEX which
word or words you are defining. Put those in brackets right after the\item , like
this:

\begin{description}

\item [\LaTeX] is a text formatting program that \ldots

\end{description}

That comes out looking like this:

LATEX is a text formatting program that . . .

10 Finishing and Processing Your Article

You now know enough to write a simple article, assuming you don’t want to get
too fancy—just some text divided into sections and a nice table of contents. So it
is time to learn how to finish your document and run it through LATEX.

Finishing Up

Now we end the document environment (that we started near the top with the
\begin {document } command):

\end{document}

You now have a text file containing your document and the markup telling LATEX
what to do to it.

18

Processing with LATEX

First, save your article as whatever you like, but it must end in.tex . I will use
latex-article.tex in the following. Now, if you don’t already have one
open, start a terminal (a dos prompt). Type in:

latex latex-article

and hit return. The name of your file must end in.tex , but when running LATEX,
you don’t need to actually type the.tex . LATEX is smart enough to know what
you mean. (Of course, it doesn’t hurt if you include the.tex .)

You should see a lot of informational messages flying past. Don’t worry about
them unless you get an error message. When LATEX is finished, you will have
several new files in your directory, all with the same name as your tex file but with
different extensions. In this example, I now have the following files:

latex-article.aux latex-article.log latex-article.toc
latex-article.dvi latex-article.tex

The .aux file contains information that LATEX uses to construct things like the
table of contents and section numbering.

LATEX reads the.toc file to make the table of contents in the final document.

The.log file contains informational messages and warnings that LATEX issued
while processing the file.

To see how your document came out, use xdvi to open the.dvi (DeVice In-
dependent) file.

xdvi latex-article.dvi

WARNING: If you have a footnotes, endnotes, or a table of contents, you need
to run LATEX at least one more time. The first time through, LATEX builds the.aux
and .toc files. The second time, it will insert the information from these files
into your document. A third time might be necessary if the table of contents or
something else has caused footnotes to move or some other insult to pagination.
In this case, a third time will set everything right again. Unless you are writing a
huge book or something, running LATEX shouldn’t take more than a few seconds.
So it never hurts to run it three or four times, just to be sure. If you delete any of
the .aux or .toc files, the next time you run LATEX will be the first time again
(that is, if there are no.aux are.toc files, LATEXhas to start making them from
scratch again). So it is usually best not to delete those files until you are done.

19

Dealing with Errors

Sometimes LATEXwill stop in the middle of processing a document. It might look
a bit like this:

! LaTeX Error: Something’s wrong--perhaps a missing \item.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help.

...

l.753 \begin{verbatim}

?

This tells us that there is a problem somewhere around line 753, and that it
might have something to do with a missing\item command. Sometimes you can
input a proper command at the prompt (the ? is LATEX waiting for you to tell it
what you meant), but I usually find it easier to quit LATEX right there (hit Ctrl-c)
and go fix the problem in the text file. Also, you can sometimes just hit the return
key to have LATEX skip this error and continue. Not a great idea, but you can do it.

In my limited experience, most errors on simple documents are caused either
by forgetting to close an environment or by misspelling a command (resulting in
LATEX complaining about an unknown command).

DVI → PS & PDF

You will prolly want to convert your.dvi file into either a postscript (PS) file or
a portable document format (PDF) file. Easy. First make a postscript file from the
dvi file:

dvips -o latex-article.ps latex-article.dvi

then, if you want a PDF file, do:

ps2pdf latex-article.ps latex-article.pdf

Simple and the results not only look great, but anyone on almost any operating
system can view and print your finished document as well as your source text file
(if you make it available).

20

pdflatex

There is an even easier way to go from your.tex file to a.pdf file—a program
calledpdflatex . For reasons we don’t need to get into here, there are a few
minor inconveniences between latex and pdflatex, mostly involving including im-
ages. But if you have no images you have nothing to fear. (And even if you do
have images, it is a very simple matter to work around the inconveniences.)

pdflatex will convert your.tex file straight to a.pdf file. So you don’t
have to worry about all that dvips and ps2pdf stuff.

pdflatex latex-article.tex

latex2html

If you want to convert your document to html,latex2html is the perfect place
to start. latex2html is a perl script, so it is a little slow and requires that you
have perl installed. On the plus side, it works well and if you are running Linux,
it should already be installed and ready to go.

txt2tex

Another cool program istxt2tex by Kalvis M. Jansons. It takes a text file and
adds LATEX markup, turning it into a LATEX file that is ready to be run through either
LATEX or pdflatex . I tested it by feeding it some literature (A Tale of Two Cities
and some Mark Twain) from Project Gutenburg.txt2tex did a great job—they
all went throughpdflatex with no problems with the markup.

11 Conclusion

That is it, you now know enough to start using LATEX to create your documents.
Not so hard, right? But realize that we have not even looked at a fraction of the
capabilities of LATEX—it may not be perfectly suited to every writing task, but it
can certainly handle just about anything that involves the written word. You can
insert images, create tables and figures, use just about any writing system in the
world (including Asian languages), fiddle with every aspect of the layout, include
hyperlinks, and a whole lot more. So enjoy.

Next time we will look at some slightly more advanced topics, including: using
packages to extend LATEX, tables and figures (including graphics), and how to
make an index and a bibliography.

21

12 Hints

Don’t forget the\maketitle and the\tableofcontents (if you want one)
just after the\begin {document }.

Don’t forget to close environments. Starting a list and then forgetting the
\end{itemize } (or whatever list it was) is one of my most frequent mistakes.

13 Sample LATEX Document

Here is an article template, so you have an idea how one might look.

\documentclass[a4paper,12pt]{article}

\title{}
\author{}
\date{}

\begin{document}

\maketitle
\tableofcontents

\section{}

\begin{itemize}
\item

\item

\end{itemize}

\subsection{}

\end{document}

22

14 About This Document

Copyright Notice

This article is Copyrightc©2002 Chris Spackman.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.1 or any later version
published by the Free Software Foundation; with no Invariant Sections, with no
Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is avail-
able from the Free Software Foundation or from this site at http://www.openhistory.org/gnufdl.html.

23

